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Random and Systematic Uncertainties of
Reflection-Type ()-Factor Measurement
With Network Analyzer
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Abstract—T he reflection-type measurement of the unloaded @
factor of microwave resonant cavities consists of measuring the
complex reflection coefficient with a network analyzer as a func-
tion of frequency and fitting the measured data to a circle on a
complex plane. The measurement errorsare of two kinds: random
errorscaused by imperfect datafit to an ideal circleand systematic
errorscaused by thelimited accuracy of the network analyzer and
its accessories. Thispaper presentsthe methodsfor estimating the
measurement uncertainties for both kinds of errors.

Index Terms—Cavity resonators, measurement uncertainties,
network analyzers, Q-factor measurement.

I. INTRODUCTION

HE measurement of a (2 factor by reflection-type method

determines the loaded and unloaded ¢ factors by fitting
the measured data to the so-called @) circle [1], [2]. Before the
era of automatic network analyzers and personal computers,
the measurement was performed with aslotted line and the data
fitting was performed graphically, using a compass and a ruler
[3]. Today, the measurement is performed with avector network
analyzer and the data fitting is accomplished numerically on a
personal computer [4]-8]. Accurate knowledge of the unloaded
@ factor isimportant in measurement of material propertiessuch
as the surface resistivity of high-temperature superconductors
[9] or the loss tangent of engine oil [10].

As with any scientific measurement, it is of importance
to establish the accuracy of the measurement method. This
paper will discuss the uncertainty limits of the reflection-type
measurement, which is performed with an automatic vector
network analyzer. Two typesof errorswill be discussed: random
and systematic errors. The random errors cause the recorded
data to depart from an ideal @ circle. The systematic errors
are the reason for the worst case residual uncertainties such
as specified by the manufacturers of network analyzers.

II. RANDOM ERRORS
A. Data-Fitting Procedure

The data-processing procedure discussed here consists of fit-
ting the measured complex reflection coefficient I" to the ideal
@ circle specified by afractional linear transformation [7]
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Fig. 1. Ided @ circle (bold line) of a microwave resonator. The detuned
reflection coefficient is denoted I'; and the loaded reflection coefficient is
denoted I';,.

Therea variable ¢ is a normalized frequency variable

S fL
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where f isthe operating frequency, f; isthe resonant frequency
of the unloaded resonator, and f;, is the resonant frequency of
the loaded resonator. For high-( resonators (say, 2 > 100), ho
loss of accuracy is committed by substituting fr, in place of f,
in the denominator of (2) [11, p. 55].

Thethree complex coefficientsas, a2, and a3 arethetransfor-
mation constants that determine the properties of the fractional
linear transformation. When the operating frequency isfar from
the resonant frequency, the corresponding reflection coefficient
becomesT'y = a1/as3, i.e., the detuned reflection coefficient.
On the other hand, when f = f;,, the reflection coefficient be-
comes 'y, = a», i.e., the loaded reflection coefficient. The sit-
uation is illustrated in Fig. 1, which can be interpreted by the
equivalent circuit shown in Fig. 2. In that circuit, &, isegua to
the characteristic impedance of the input port and X, denotes
the reactance of the coupling mechanism. The network analyzer
is represented by a Thevenin source with internal impedance
equal to R... The unloaded resonator is shown as a parallel res-
onant circuit characterized by Qq, Ro, and wy = 27 fo. When
the coupling is capacitive, the @ circleis situated below the real
axis (as shown in Fig. 1), and when it isinductive, the @ circle
is situated above the real axis. However, if there is a section of
atransmission line inserted between the resonator and external
observation port, such as shown in Fig. 2, the circle may bero-
tated anywhere within the Smith chart.

t
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Fig. 2. Equivalent circuit for areflection-type measurement of the @ factor.

The equivalent circuit shown here ignores the losses in the
coupling mechanism in order to simplify the discussion of mea-
surement uncertainty. Inthiscase, I'; islocated on the perimeter
of the Smith chart (i.e,, |T'y| = 1). Furthermore, the coefficient
az IS pureimaginary, its magnitude being equal to the loaded ()
factor [7]

Qr = Im(az). (3)
The diameter of the @ circleisthe distance between 'y and I',
d=lag — 2| 4)

as

This diameter determines the value of the coupling coefficient

[7]

1
i
Knowing @, and «, one can find the unloaded reflection coef-

ficient Qg [3]
Qo = Qr(1 +r). (6)

Clearly, once the transformation constants a; to a; are de-
termined, the circuit elements @@;, «, and Qg are uniquely
specified. The procedure of finding the transformation coeffi-
cients and their uncertainties is described in [11]. The starting
point is to rewrite (1) in the implicit form

ait +as —asztl’ =1 (7)

The network analyzer measures the reflection coefficient
I, (n = 1,..., N) a anumber of frequency points f; to
fn. The corresponding normalized frequency variable t,
(n = 1,..., N) is computed by (2). Each measured point
yields an equation of type (7). In this way, one obtains a linear
system of N equations that has to be solved for the three
unknown transformation coefficients. In matrix notation, the
system can be written as

ailer) + asle2) + asles) = |I') (8

where|e; ) isacolumn vector containing thevaluest; to ¢y, |e2)
isavector that hasall its components equal to unity, etc. Thede-
tailsmay befoundin[11, pp. 69-72]. To solvethe systemin the
least square sense, one creates the projections of (8) onto direc-
tions of |e; ), |e2), and |es), to obtain a3 x 3 matrix equation

Cla) = |g). )

The elements of matrix C are the weighted scalar products of
the type

Cij = (ei|Plej) - (10)

|a) isacolumn vector containing the three transformation con-
stants and |g) is the column vector as follows:
{er|PIL)
{e2|PIL)
(es|PIT")
The diagonal matrix P contains the weights of individual
measurements. Those weights are inversely proportional to
the variances of individual measurements. The computational

procedure must be performed iterative. In the first iteration, the
weights are

lg) = (11

1
T 2(14 TP

In the later iteration steps, the computation of weights is
specified in Section 11-B. When the iteration is finished, the
three unknown coefficients are obtained by inverting the matrix
equation (9)

Pn (12)

|a) = Dlg) (13)

where D = C71.

B. Uncertainties Due to Random Errors

To determine the variances of the transformation coefficients,
one substitutes the computed val ues of the transformation coef-
ficient back into (8). The nth line of this equation system yields
aremaining error

€n = G1ty + az — azt, ')y, — ). 14
The weighted squared sum of errorsisarea number
N
5% = Z pnIEnIQ' (15)
n=1

Using this quantity, the variances of transformation coefficients
are computed as follows [11, p. 81]:

D’rn’rnSQ
LR
2 CjDjj
j=1

Although the transformation coefficients are complex numbers,
their deviation is expressed here with a real number. It is
assumed that the real and imaginary parts of complex numbers
have the same variances and that they are uncorrelated. In that
case, the uncertainty (= standard deviation = square root of
variance) is a real number that defines the radius of a circle
on the complex plane, which contains about 63% of points
with normal random distribution [12, p. 195]. This value is
not far from 68% that goes with the “standard deviation”
commonly used for specifying the experimental uncertainty of
real variables.

For the second and third iteration, more accurate weights are
computed as follows [11, p. 74]:

(16)

0% (am) =

1
- tho?(a1) + 0%(az) + 2|Tal?0%(a3)”
No more than three iterations are needed [11, p. 99] so that the
computational procedureisamost instant, even if one measures

1601 data points (the maximum that the network analyzer can
take).

Pn (17)
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Starting with the transformation constants and their variances
evaluated as above, the values of the circuit elements and their
uncertainties are obtained in a straightforward manner. As the
unloaded 2 depends only on a3, the uncertainty (standard devi-
ation) of Qy, is

o(Qr,) = o(az).

The diameter d of the @ circle depends on al three transforma-
tion coefficientsaccording to (4). By using the error propagation
formulafor random quantities [13, p. 114]

(18)

2 2 2

o?(d) = o 02(a1)+|§—i 02(a2)+|§—;i o?(az)
(19)
one obtains the uncertainty of d
o(d) = 1| T | 20, 4 “—202(a3). (20)
|as|? a3

Asthe coupling coefficient depends only on d, itsuncertainty is
given by

_ 20(d)
o(k) = Z-ar (21)
The uncertainty of @, follows from (6)
o(Qo) = /(1 +7)20%(Qr) + QRo%(r).  (22)

[11. SYSTEMATIC ERRORS
A. Instrument Error Specifications

Most network analyzers can measure al four scattering pa-
rameters of a two-port, but here, we are interested only in the
measurement of Sy, i.e., thereflection coefficient of aone-port.
Two important technical specifications of the network analyzer
that influence the accuracy of the @@ factor measurement are:
1) the source mismatch and 2) the residual S;; uncertainty.
The source mismatch is a measure of how much the internal
impedance of the network analyzer departs from its nominal
value of 50 2. The mismatch is expressed in decibels (return
loss); typical values range between 3040 dB. The residua un-
certainty describes the worst case departure from the correct
value that can be expected from a given model of a network
analyzer after it has been properly calibrated. For the model
HP8712C, the S;; residual amplitude and phase uncertainties
are shown in Fig. 3(a) and (b) [14].

It isseen from Fig. 3(a) that the magnitude uncertainty of the
reflection coefficient is smallest at the center of the Smith chart,
where it has avalue of +0.01. The uncertainty grows when the
measured point moves toward the perimeter of the Smith chart,
whereit attainsthe value of £0.06. Therefore, in theworst case,
the displayed reflection coefficient of a lossless one-port can
be as large as 1.06, while the network analyzer is still working
within specifications. Thisis quite alarge error, but fortunately,
the observed error in experiments to be described in Section 1V
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Fig. 3. Residua error specification for Agilent Network Analyzer Model
8712C (see[14]). (8) Amplitude uncertainty. (b) Phase uncertainty.

was never that large. The largest value of the detuned reflection
coefficient I'y (i.e., the point farthest away from the center of
the Smith chart) was only 1.4% larger than unity.

Although not obvious from Fig. 3(a) and (b), the phase
uncertainty is related to the magnitude uncertainty. If one
assumes that the complex number I" can take an arbitrary value
within a circle of radius AT}, then the maximum phase error
is tan Ay = A|l'}/|[| (see Fig. 4). Within the accuracy of
reading Fig. 3(a) and (b), this relationship holds true for all the
points, except [T'| = 0, where the phase is irrelevant anyway.
It is, therefore, concluded that, for the purpose of estimating
the systematic uncertainty of the complex number S;;, one can
assume both the amplitude and phase errorsto be described by a
single real number, which is equal to the amplitude uncertainty
A|l]. In the examples that follow, the values of A|L'| were
read from the manufacturer’s diagrams and stored in the form
of data tables, one for each frequency range specified by the
manufacturer. The computational procedure for evaluation of
systematic errors then linearly interpolates the values between
the tabulated data for a specific network analyzer. The phase
uncertainty curvesare not used in the proceduredescribedinthis
paper, as they are deemed superfluous.

B. Uncertainties Due to Source Mismatch

To simplify the discussion, the length of the transmission line
in the equivalent circuit in Fig. 2 will be shrunk to zero. The
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Fig. 4. Uncertainty circle on the complex planeI".
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Fig. 5. Relative error in loaded (2 due to the source mismatch.

computed conductance of the external circuit that is connected
in parallel with the unloaded resonator becomes [11, p. 91]

R,

Gex = 759 vo-
R+ X2

(23)

The coupling coefficient « is the ratio of the power dissipated
in the external circuit to the power dissipated in the unloaded
resonator

Iy
X\
R.[1 :
, ( (%) )
When the source resistance R. isin error by a small amount
6 R, the corresponding error in the coupling coefficient is

X 2
dli _ 1 B <Rc> 6RC

dR, 6Rc = —ko } X, 2 R,
(&)

where the unperturbed val ue of the coupling coefficient was de-
noted «. It followsfrom the aboveexpressionthat, for any value
of X, the relative error of the coupling coefficient cannot be
larger than the relative error of the source resistance

K= GexRO =

(24)

oKk = (25)

bk OR,
— =|—. 26
ko max RC ( )

The corresponding increment in @, is
QL = aQp k. (27)

L

Applied to (6), this gives

6Q1
QL

(29)

1 |6R.
-— %

14—
s

The source mismatch (the manufacturer prefers to call this
quantity “source match”) of the network analyzer is expressed
as follows:

O0R. 2

e~ 2
R, 102/20 — 1 (29)

where « is the mismatch return loss in decibels.

The last two equations can be used to find the uncertainty of
the measured value of ¢}, asafunction of the source mismatch
6R.. Asseen from (28), the nominal value of the coupling coef-
ficient ¢ plays an important role: small values of the coupling
coefficient greatly reduce the uncertainty of 2. This situation
isillustrated in Fig. 5. It can be seen that, as long as the cou-
pling coefficient is smaller than 0.1, the uncertainty in Qy, is
smaller than 1% even for a network analyzer with a poor mis-
match of o = 25 dB. However, for acritically coupled resonator
(kg = 1), the uncertainty in 1, is smaller than 1% only for a
very well-matched network analyzer with o« = 40 dB. For a
strong coupling of xo = 10, even the best-matched network an-
alyzer cannot guarantee an uncertainty in (@5, smaller than 2%.

Oncetheuncertainties 6@ ;, and 6~ areknown, the worst case
uncertainty of theunloaded @}, dueto the source mismatch of the
network analyzer, follows from (6) as

_19Qo 9Qo
5Qo—|aQL 501 +| % s

ﬁl — (14 1) |6Q1] + Q|94
(30)

C. Uncertainties Due to Residual Errors

Theresidua error inthe measured value S;; (denoted here by
I') may distort the apparent diameter of the @ circle. According
to Fig. 1, diameter d is equal to the distance between the reflec-
tion coefficients I'; and T';,. The residual errors for two close
points on the Smith chart most probably point in the same di-
rection. Thus, if the @ circleisvery small, both pointsI’; and 'y,
arelikely to be shifted in the same direction so that the diameter
of the @ circleisnot at all affected by theresidual error. On the
other hand, for avery strongly coupled resonator, d approaches
the value of two and the points I"; and I';, are located on dia-
metrically opposite sides of the Smith chart. It will be assumed
here that, in such a case, the phase of AI'; is opposite to the
phase of AI';, so that the error in d is a sum of the magnitudes
|AL'y] and |ATL' ] (worst case). In between these two extremes,
the phase will be assumed to grow proportionally with d so that
the worst case uncertainty of d, caused by the residua error of
the network analyzer, is expressed as follows:

Ad = |ALg| — |AL| cos <7r g) . (31)

The values of |Al'y| and |AL';| are read from the curves, such
as in Fig. 3(a), which is provided by the manufacturer of the
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network analyzer. The uncertainty in the coupling coefficient is
then obtained from (5)

Ok 2

A= pAd= 2
F= a2 T 2 ae

Ad. (32
For overcritically coupled resonators, the denominator of (32)
becomes smaller than unity so that even a small error in di-
ameter can cause a large uncertainty in the coupling coeffi-
cient and, hence, a large uncertainty in }y. For instance, for
k = 10, Ak = 60.5Ad, whereas for x = 0.1, one has only
Ar = 0.605Ad. Therefore, for an accurate measurement of
the unloaded @, the resonator should be undercritically coupled
in order to minimize the role of the residual network-analyzer
error. A similar conclusion was obtained in the Section I11-B,
when discussing the error caused by the source mismatch of the
network analyzer.

To estimate the uncertainty in 2y, one assumes that the re-
flection coefficient has been changed by an incremental value
AI'. As a consequence, the transformation constants a; to ag
will also have changed by small amounts. Equation (8) will then
be modified as follows:

(a1 + Aal)[61> + (CLQ + ACQ)[GQ) + (ag + Aag)leg + A63>
=0 +AL). ()

Subtracting (8) from (33) and performing the weighted scalar
products, one obtains the normal system of equations for the
first-order increments of transformation constants

ClAd) = |Ag) (34
where
<61[P[AF> — CL3<61[P[A63>
|1Ag) = | {e2| P|AL) — ag{e2|P|Acs) (35

<63[P[AF> — CL3<63IP[A63>

Theestimates Aay, Aay, and Aaz can beevaluated by using D,
the inverse of the system matrix evaluated earlier in the process
of data fitting

|Aa) = D|Ag). (36)
The weighted scalar products from (35) result in the following
explicit components of |Ag):

N
Agi = pultn +astl)AL, (37)
n=1
N
n=1
N
Ags == pa(l+asty)tal AL, (39)
n=1

The amplitudes of AT, are determined from the residual un-
certainty curves, such asin Fig. 3(a). The phaseis postul ated to
grow proportionally to the projection of the vector (I'y — I',,)

onto I'd. Therefore, for small @ circles, the phase of AT, re-
mains small for al the points, whereas for large @ circles, the
maximum phase approachesthevalue of 7 radians. Such aphase
behavior is consistent with the one specified by (31). Only the
third row of (36) is needed for evaluation of AQy, asfollows:

AQL = |Aasg]. (40)

The worst case uncertainty in (3o, due to residual error of the
network analyzer, is then

AQo =1+ r)AQL + QrLAk. (41)

IV. VALIDATION MEASUREMENTS AND DISCUSSION

The uncertainties evaluated in Section |1 are of a different
nature than those evaluated in Section Il1. For random errors,
the standard uncertainty means a 63% probability that the com-
plex number will be situated within the specified error circle.
For systematic errors, the uncertainty means that the worst-case
result will be within the specified error limits. It is reasonable
to assume that most-probable systematic uncertainties will be
considerably smaller than the worst case uncertainties. In order
to compare the systematic uncertainties with the random un-
certainties, the “quasi-standard” systematic uncertainties here
will be made equal to one-third of the worst case systematic
uncertainties evaluated in Section 111. This means that we trust
the manufacturer to be capable of delivering 99.7% of his in-
struments with smaller than the worst case uncertainties. For
a normal random distribution, such a percentage is associated
with three times the standard uncertainty [13, p. 174]. For in-
stance, the overall uncertainty of 0, including both the random
and systematic errors, will be computed as

ee(Q0) = \/ a0+ (5ea0) +(bae) @

whereos(Qo) isgiven by (22), 6Q)q isgiven by (30), and AQg is
given by (41). The overall uncertainties oot () and oioi (<)
will be expressed in an anal ogous fashion.

Fig. 6 shows the resonator that was used in these measure-
ments. Inside the copper-plated cavity is a dielectric resonator
of a tubular shape, with a dielectric tuning post. The oper-
ating frequency can be tuned in the vicinity of 900 MHz.
The resonator was intended as a filter between a transmitter
and the antenna so it contains two coaxia ports. Inside the
cavity, each coaxial connector is coupled to the resonator with
a short loop. The principal purpose of the experiments to be
described is to establish the value of the unloaded ¢} factor
Qo and its uncertainty.

The coaxial connectors are mounted by three machine screws
each and are easy to rotate (for adjusting the coupling coeffi-
cient). The coaxial connector at port 2 is next removed and re-
placed by a short-circuiting plate to prevent radiation. In this
way, a one-port resonator is created at port 1. The orientation
of the loop is selected such that the coupling is undercritical.
Using the network analyzer model HP8712C, the resonance of
the TEq;s mode was found around 944 MHz so the network
analyzer was calibrated for the range of 941-947 MHz in 401
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Fig. 6. Two-port resonator.

QZERO FOR WINDOWS (c) 2001 D. Kajfez
Data file name = Trace3 sip
11272002 16:21:41
N= 401
CABLE ATTENUATION
QL= 9535.7
+ 473
Qo= 161145
+ 1268

Plot 10
port1 of 1

K= 0.689586

+- 0.01033
ATTEN= 0.03 dB
FL= 9.44301270E+02

Fig. 7. Measurement #1, Smith chart display.

steps. The measured Sy; datawere then processed with the pro-
gram QZERO for Windows.! Asindicated in Section I1-A, the
losses in the coupling mechanism are ignored. This has been
achieved by using the program option “CABLE ATTENUATION.”
The result of data processing is shown in Fig. 7. In the discus-
sion that follows, thiswill be called measurement #1.

The unloaded @ was found to be 16112 with the random
uncertainty £127. The program QZERO only computes the
uncertainty due to random deviation, using the procedure from
Section I1. This value does not include the uncertainty caused
by the systematic errors of the network analyzer. The same
resonator is then measured with the top-of-the-line network

1QZERO for Windows, Vector Forum, Oxford, M'S. Software. Student version
is distributed free to students and faculty at educational institutions by sending
an e-mail message to eedarko@olemiss.edu. The full version may be obtained
from Vector Forum viatelephone at +1 662 234 4287.

TABLE |
UNCERTAINTY ANALYSIS FOR SELECTED MEASUREMENTS
Meas. #1 Meas. #2 Meas. #7 Meas. #8
HP8712C HP8510C HP8712C HP8510C
[ 9536 9713 11287 11562
o( Q1) 47 29 53 44
1 67 20 70 22
340
1 85 27 74 23
309
Q1) 118 44 115 55
X 0.6896 0.6983 0.4318 0.4333
o(x) 0.0103 0.0059 0.0068 0.0038
LW 0.0252 0.0077 0.0146 0.0045
3
1se 0.0218 0.0067 0.0218 0.0067
3
Giat(K) 0.0349 0.0118 0.0271 0.0089
o 16111 16496 16160 16572
o( Qo) 126 75 108 76
1 354 108 266 85
340
1 351 111 352 112
35
Gua(Oo) 514 172 454 159

Notation: o: standard uncertainty due to random error, &: worst case uncertainty due to
source mismatch, A: worst case uncertainty due to residua error.

analyzer model HP8510C, calibrated for the same frequency
range and the same number of points. When the measured
data were processed with QZERO for Windows, the result for
the unloaded 2 was found to be 16497 + 75. This is called
measurement #2.

Next, the systematic uncertainties were computed by the
procedure described above, and the results are summarized in
Table I. A surprising fact is that the same resonator measured
by different network analyzers yields different results for the
loaded and unloaded (@ factors, athough the data are processed
in the same way. The overall uncertainty o.+((o) for model
HP8712C is 3.2% and, for model HP8510C, it is considerably
better, namely, 1.0%. These uncertainties include both the
random and systematic errors. For both network analyzers, the
systematic errors are more significant than the random errors.
In each category of uncertainty contributions, model HP8712C
accumulates the uncertainties two-to-three times larger than
those for model HP8510C.

The ultimate goal of any () factor measurement is to deter-
mine the unloaded @), i.e., (Jo. Thisis an inherent property of
the resonator and its value does not depend on the amount of
coupling between the resonator and external circuit. Therefore,
when theloop-and-connector assembly at port 1isrotated, ~ and
@, should vary, but the value of Qg should remain constant.
For a medium coupling, measurement #3 is performed with
HP8712C, and measurement #4 is performed with HP8510C.
In an analogous way, for the strongest coupling coefficient (at
port 1), the corresponding measurements are denoted by #5 and
#6. Afterwards, the coaxia coupling at port 1 was removed,
and the opening was covered with a short-circuiting plate. The
other coaxia connector-and-loop assembly was then inserted at
port 2 and measurements #7—#12 were taken in an analogous
way. Odd measurement numbers stand for HP8712C and even
numbers stand for HP8510C. The coupling coefficients found
in each measurement are shown in Table I1.
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TABLE I
COUPLING COEFFICIENTS OF INDIVIDUAL MEASUREMENTS
Measurement X1 Measurement X2
#1 0.690 #1 0.432
#2 0.698 #8 0.433
#3 1.153 #9 2.241
#4 1.173 #10 2.325
#5 4.074 #11 4.033
#6 4.278 #12 4.238
4
18210
1.75¢
¢ 4 +
1.7+ F
q q t
otesr 1 ¢ 13 }
3 < '
§ 16 | . ~
2 b
5155
1.5 2
1.45 L 4
1.4 -
0 2 4 6 8 10 12

Measurement number

Fig. 8. Unloaded @ factors and their overall uncertainties. Odd numbered
measurements. HP8712C. Even numbered measurements: HP8510C.

The results for Qo and its uncertainty are displayed in
Fig. 8. The smallest uncertainty (approximately +1%) is
obtained for measurements #2 and #8, which correspond to the
smallest coupling at each port, both measured with HP8510C.
For stronger coupling, the uncertainties increase. The largest
uncertainty obtained with HP8510C is £2.8% (measurement
#6), corresponding to the strongest coupling. The values of (3
measured with HP8510C are all pretty consistent: the lowest
result being 16 496 (#2) and the highest one being 16 780 (#12),
differing by 1.7% from each other. The results obtained by
HP8712C are scattered in a wider range, namely, from 15806
(#5) to 16246 (#3), i.e., within 2.7% from each other. The
uncertainties are also larger than for the HP8510C, the smallest
one being +2.8% (#7) and the largest one being £8.6% (#5).

Table | contains the four measurements utilizing an under-
critical coupling, i.e., such as appropriate for minimizing the
effect of systematic errors. The consistency of results for the
unloaded @ measured from port 1 and the one measured from
port 2 is remarkable in view of the fact that the two coupling
coefficients differ considerably from each other (measurements
#2 and #8). According to [15], such adifferencein coupling co-
efficientswould cause an additional uncertainty of £3.0%if Qg
was measured by the transmission-type method.

The problem remains that al the values of (¢ obtained with
model HP8712C are lower from those obtained with HP8510C.
This is probably due to the source mismatch of HP8712C
being only 30 dB, as compared with the value of 40 dB for the
HP8510C. Nevertheless, the differences in results are within
the estimated uncertainty limits.

V. CONCLUSIONS

The reflection-type method of measuring the @ factor con-
sists of taking 50 or more points on the Smith chart as a func-
tion of frequency and fitting the measured datato anideal circle.
The reflection coefficients measured with the vector network
analyzer are complex numbers. In this paper, the random error
analysisisbased on an assumption that asingle real number can
be defined, which signifies the 63% probability radius within
which the complex point can be found.

Two kinds of measurement errors influence the overal un-
certainty of the results: random and systematic errors. Asfar as
the systematic errors are concerned, the source mismatch of the
network analyzer is about as important as the residua S;; er-
rors. The effect of both these errors can be minimized by using
an undercritical coupling to the resonator. However, if the cou-
pling is reduced too much, the @ circle becomes very small and
the random Sy errors may dominate the overall uncertainty. It
is believed that couplings between 0.1-1 are appropriate for a
proper balance between random and systematic errors.

From the experiments conducted with the resonator at
940 MHz, it can be concluded that the network analyzer model
HP8510C is capable of assuring the overall uncertainty of (J at
approximately 1%, and model HP8712C at approximately 3%,
provided the resonator being tested is undercritically coupled.

The analytic expressions derived in this paper enable one to
estimate the uncertainties caused by both random and system-
atic errorsfor each measured data set. Thus, it becomes possible
for an experimentalist to process the measured datain away that
will determine not only the least-square values of @, , and
o, but aso their overall uncertainties for a specific network
analyzer and for a given frequency of operation.
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